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Descriptive set theory and equivalence relations

I Descriptive set theory studies definable sets/functions in Polish spaces.
— Polish = separable, completely metrizable.
— Definable = Borel, analytic (projection of Borel), co-analytic, etc.

I In the last 30 years: definable equivalence relations.
— View an equivalence relation E on a Polish space X as E ⊆ X 2.

I Such equivalence relations arise naturally all over mathematics:
Many mathematical objects (e.g., Riemann surfaces, Banach spaces,
measure-preserving transformations, etc.) can be encoded as points in Polish
spaces.
Classifying these points up to some notion of equivalence (e.g., conformal
equivalence, isomorphism, conjugacy) means understanding the (Borel)
complexity of this equivalence relation.
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Borel reducibility

Descriptive set theory makes precise what it means for one classification
problem to be easier than another.

I Let E ,F be equivalence relations on Polish spaces X ,Y , respectively.

I We say that E is Borel reducible to F , write E 6B F , if ∃ Borel
f : X → Y such that for all x0, x1 ∈ X

x0 E x1 ⇐⇒ f (x0) F f (x1).

I In other words, there is a Borel embedding of quotient spaces, i.e., an
injection X/E ↪→ Y /F that lifts to a Borel map X → Y .
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Different corners of the zoo of equivalence relations

I Most equivalence relations that come up in mathematics are analytic
(Borel and projections thereof).

I Different subclasses of these connect to different parts of mathematics
and studying them requires different background and philosophy.

I For example, a very interesting subclass is that of orbit equivalence
relations induced by continuous actions of Polish groups.

— Evident connection with topological dynamics.

I In this course, we will focus on countable Borel equivalence relations
(CBERs).

— By “countable” we mean each equivalence class is countable.

— These connect to countable group actions and Borel graph combinatorics.
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Countable Borel equivalence relations via group actions

I Examples of CBERs are orbit equivalence relations induced by Borel
actions of countable groups.

I Conversely, the Feldman–Moore theorem (a consequence of
Luzin–Novikov) states that these are all of them!

I Thus, taking {γn} =.. Γ y X with E = EΓ, each x ∈ X can refer to other
guys in its E -class by Borel names (Armand, Émile,...): γ0x , γ1x , . . .

I The abundance of Borel actions of countable groups makes the class of
CBERs extremely rich.
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Countable Borel equivalence relations via graphs

I CBERs also come from graphs as the connectedness relations EG of
locally countable Borel graphs G .

— By a graph G on a space X we just mean a symmetric set G ⊆ X 2.

I Every CBER E on X comes from such a graph:

Take G ..= E , the complete graphing of E .

Even better: let Γ y X such that E = EΓ,

take a symmetric generating set
Γ = 〈S〉, and define the Schreier graph:

xGSy ..⇔ σ · x = y for some σ ∈ S.
Then E = EGS .
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Interplay with other subjects
I Any countable Borel group action Γ y X can be turned into a

continuous one by replacing the Polish topology on X .
— Enables topological tools such as Baire category.

I Borel group actions and graphs naturally occur on measure spaces (X , µ).
— Enables measure-theoretic tools such as the Borel–Cantelli lemma and

much much more.
I All these together has created extremely active two-way traffic between

the study of CBERs and
ergodic theory
measured group theory
graph combinatorics
geometric group theory
percolation theory
probabilistic combinatorics
topological dynamics
von Neumann algebras
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Our secret weapon
But what’s our contribution? What’s the difference between descriptive set
theoretic and analytic thinking?

I We think pointwise, analyzing the local combinatorics at a point, whereas
analysts analyze the space through the prism of functions on it.

I What allows us to do this is the Luzin–Novikov uniformization theorem!
— Every Borel set B ⊆ X × Y with countable X -fibers is a countable union of

(graphs of) Borel functions, i.e., B =
⋃

n∈N γn, where γn : X ⇀ Y is a
Borel partial function.

— Allows each x ∈ X to quantify (∃,∀) over its (countable) equivalence class
and give Borel names to the other guys in its class.

I We are not allowed to choose a point from each class! (Measure Theory 101)
I Thus, our way of thinking is best described as originless combinatorics.
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Illustration via a rigidity question and its answer
I (X , µ) — a standard probability space, e.g., [0, 1] with Lebesgue measure.

I Γ — a countable (discrete) group
I Fn — the free group on n generators.

Question (Rigidity for free groups)
Let Fn yα (X , µ) and Fm yβ (X , µ) be free ergodic (indecomposable)
measure preserving actions. If these actions produce the same orbits (i.e.,
their orbit equivalence relations Eα and Eβ are equal), must n = m?

I Measure preserving: µ(γ · A) = µ(A), for each γ ∈ Γ and A ⊆ X .
I Ergodic: the only invariant measurable subsets of X are null or conull.

Question (Rigidity in general)
How much about the group Γ is “remembered” by the orbit equivalence
relations of its free ergodic probability measure preserving (pmp) actions?

Let’s consider equivalence relations in general.
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Countable Borel equivalence relations

I Let E be an equivalence relation on X .

I E is Borel if it is a Borel subset of X 2.
I E is countable if each E -class is countable.

Examples
Vitali equivalence relation EV on X ..= R: xEV y ..⇔ x − y ∈ Q.
Eventual equality E0 on X ..= 2N: xE0y ..⇔ ∃k x |>k = y |>k .
Tail equivalence Et on X ..= 2N: xEty ..⇔ ∃k, ` x |>k = y |>`.
Orbit equivalence relations: for a Borel action Γ yα X of a countable
group Γ, the induced orbit equivalence relation Eα.

Theorem (Feldman–Moore)
Each countable Borel equivalence relation E is the orbit equivalence relation
of Borel action of some countable group Γ.
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Countable Borel equivalence relations on (X , µ)

I E on (X , µ) is ergodic if the only E -invariant measurable subsets of X
are null or conull.

I E on (X , µ) is measure preserving if every Borel automorphism γ of X
that fixes E -classes setwise (i.e., γ(x) E x for all x ∈ X ) is measure
preserving.

I E on (X , µ) and F on (Y , ν) are said to be measure-isomorphic, written
E ∼=m F , if there is a measure preserving isomorphism
f : (X , µ) ∼−→ (Y , ν) such that for a.e. x0, x1 ∈ X

x0 E x1 ⇐⇒ f (x0) F f (x1).

I Borel actions Γ yα (X , µ) and ∆ yβ (Y , ν) are called orbit equivalent,
written αOEβ, if Eα ∼=m Eβ.

Question (Rigidity for free groups—restated)
If free ergodic pmp actions of Fn and Fm are orbit equivalent, must n = m?
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Elasticity of amenable groups
We could ask the same question for Zn:

Question (Rigidity for Zn)
If free ergodic pmp actions of Zn and Zm are orbit equivalent, must n = m?

Unlike the Fn, these groups are amenable and we have the following:

Theorem (Dye 1959 for Z, Ornstein–Weiss 1980 for all amenable)
Any two free ergodic pmp actions of two amenable groups are orbit
equivalent. In other words, up to OE, there is only one free ergodic pmp
action of amenable groups.

In particular, the answer for Zn is NO!
For nonamenable groups however, the picture is very different:

Theorem (Ioana 2007, Epstein 2008)
Every nonamenable group has continuum-many non-OE free ergodic actions.

This however, doesn’t answer the original question about free groups.
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Distinguishing equivalence relations

Question (Rigidity for free groups—restated)
If free ergodic pmp actions of Fn and Fm are orbit equivalent, must n = m?

I In order to distinguish equivalence relations up to measure-isomorphism,
we will attach an invariant, called cost.

I How much does it cost to describe an equivalence relation E on (X , µ)?

I We’ll use edges between the points of X to connect each equivalence
class and the minimum amount of edges will be the cost of E .
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Graphings and cost
Let E be a countable Borel equivalence relation on (X , µ).

I A graphing G of E is a Borel graph G ⊆ X 2 such that its connectedness
equivalence relation EG is exactly E .

I The cost of G is the measure of its edges: Cµ(G) ..= 1
2

∫
X degG(x)dµ(x).

I The cost Cµ(E ) of E is the infimum of the costs of all of its graphings.
I Given E , how to compute its cost? Minimal graphings?
I Minimal graphings: A graphing T of E is called a treeing if it is acyclic.
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Treeable equivalence relations
I An equivalence relation E on (X , µ) is called µ-treeable if it admits a

(Borel) treeing on a µ-conull set.

I Not every equivalence relation is µ-treeable! (We cannot choose a point
from each E -class.)

Free Borel actions of the following groups induce µ-treeable eq. relations:
Free groups Fn, similarly (Z/nZ)∗k

Jackson–Kechris–Louveau: virtually free groups, e.g. GL2(Z)
Conley–Gaboriau–Marks–Tucker-Drob: Surface groups (= fundamental
groups of surfaces)
Conley–Gaboriau–Marks–Tucker-Drob: Elementary free groups (= groups
that are elementarily equivalent to a free group)

However:
Adams–Spatzier: Free pmp actions of infinite Kazhdan groups (e.g.
GLn(Z) for n > 3) induce non-µ-treeable equivalence relations.
Jackson–Kechris–Louveau: Treeable equivalence relations are not closed
under products, e.g. E0 × E (F2 y X ) is not µ-treeable.
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Fundamental theorem of cost

Proposition (Gaboriau 1997)
For E on (X , µ), if a graphing G achieves the cost of E , then G is a treeing.

Proof. If there are non-null-many cycles, we can get a Borel non-null
collection of disjoint cycles and cut them, thus reducing the cost.
I But even when E is pmp and treeable, it is conceivable that there are two

treeings one bushier (regular of degree 5) than the other (degree 3).

Conceivable, but not the case:

Theorem (Gaboriau 1997)
For pmp E, if T is a treeing of E then Cµ(E ) = Cµ(T ). In particular, any
two treeings have equal cost.
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The cost of free pmp actions of Fn

Corollary (Gaboriau 1997)
Orbit equivalence relations induced by free pmp actions of Fn have cost n.

I Question (rigidity for free groups): If free ergodic pmp actions of Fn and
Fm are orbit equivalent, must n = m?

I Answer (Gaboriau 1997): YES!
I Several years later, Greg Hjorth obtained a converse to this corollary:

Theorem (Hjorth 2013)
If a pmp ergodic equivalence relation E is treeable and has cost
n ∈ N ∪ {∞}, then it is induced by a free pmp action of Fn.
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Towards a strengthening: ergodicity of one automorphism
For pmp actions of Z (an action of one automorphism), ergodicity (a global
condition) has the following characterization in terms of local statistics.

Theorem (Pointwise ergodic, Birkhoff 1931)
A pmp action Z y (X , µ) is ergodic if and only if for each f ∈ L1(X , µ)
and for a.e. x ∈ X,

lim
n→∞

(average of f over Fn · x) =
∫

X
fdµ,

where Fn ..= [0, n) ⊆ Z.
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Strengthening of Hjorth’s theorem

Theorem (Miller–Ts. 2017)
If a pmp ergodic equivalence relation E is treeable and has cost
n ∈ N ∪ {∞}, then it is induced by a free pmp action of Fn

such that each
of the n standard generators of Fn alone acts ergodically.

In other words: given a treeing T of E , we modify it into a different treeing,
which decomposes into Z-lines with correct ergodic averages for each
f ∈ L1(X , µ).
To do this, we introduce and use:

edge sliding: a homology preserving Borel technique for modifying graphs,
building saturated Borel partitions into finite sets,
an easy method of exploiting nonamenability.
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Edge sliding

I An edge sliding along a railway R ⊆ X 2 is a Borel map σ : X 2 → X 2 that
keeps the edges of R fixed and for every e ∈ X 2:

I An iterated edge sliding of a graph G is a countable ordinal iteration of
edge slidings, which implements the following railway building process:
(0) fix rails in G and slide other edges of G along them, (1) include the
latter in the set of fixed rails and slide other edges along them, (2+) etc.

I Using such iterated edge slidings we modify G preserving its
connectedness and not introducing new cycles.

I It “remains” to build Z-lines with correct ergodic averages — maybe I’ll
tell you how one day.
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